An Inverse Limit Construction

of a Domain of Infinite Lists

Young-il Choo

Computer Science
California Institute of Technology

5204:TR:85

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1985 2. REPORT TYPE 00-00-1985 to 00-00-1985
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

An Inverse Limit Construction of a Domain of Infinite Lists £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 9
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

An Inverse Limit Construction of a Domain of Infinite Lists

Young-il Choo

Computer Science Department
California Institute of Technology

5188:TR:85

supetceded by
5204:TR:85

The research described in this paper was sponsored by the Defense Advanced Research Projects
Agency, ARPA Order No. 3771, and monitored by the Office of Naval Research under contract
number N00014-79-C-0597.

© California Institute of Technology 1985

An Inverse Limit Construction of a Domain of Infinite Lists

Young-il Choo
Caltech Computer Science
May 1985, Revised October 1985

Abstract

A domain of infinite lists is constructed by taking the inverse limit of a chain of finite list domains
ordered by projection. The resulting space, called L, is shown to be a complete partial order. Its
use as a semantic domain for non-terminating programs is illustrated.

1 Imntroduction

Infinite lists arise when we want to give meaning to non-terminating, yet answer producing, pro-
grams. In applicative languages lazy evaluation enables infinite objects to be progressively com-
puted. Precise formulation of infinite lists is necessary for formal reasoning of such programs.

As a start, we might define infinite lists by specifying each element of the list. Unfortunately,
this method is inadequate if we want lists whose elements are again infinite lists. Next, consider
defining lists by levels. First, we have infinite lists of order one, the elements of which are atoms.
Next, the infinite lists of order n + 1 are obtained by allowing infinite lists of order n or less as
elements. Even this construction does not capture all definable infinite lists.

Consider an infinite list whose first element is an infinite list of order one, second element is
a list of order two, etc. Clearly, this list is not of any finite order. We shall say a list like this has
order w. The interesting point here is that such lists can actually be generated in a programming
language that allows lazy evaluation. Once we have a list of order w, we can use it to define a list
of order w - 2 and so on {up to eo).

Infinite objects can be computed only as a limit of finite ones. The notion of a limit presup-
poses some kind of a topology, or at least an ordering. The ordering we use is that of definedness.
By generating a sequence of finite lists that become more and more defined, we can specify an
infinite list.

In these notes we explore a method of constructing a domain of infinite lists by taking the
inverse limit of the chain of finite lists ordered by projection, and indicate how the meaning of
non-terminating programs can be defined. For more detail on the inverse limit construction, good

references are Dugundji [66] and Nagata [68].

2 TFinite Lists

Given a set of atoms A, make it into a flat lattice by the usual technique of adjoining a bottom
element, L 4, which is less than all the defined elements of A. We indicate the empty list by ¢,
and the undefined list by L.

Definitions
The finite lists of length n, L, are defined inductively:

Lo = {oal}
L1=(AUL0) X Lot Lp
Ln+1 - (A U Lﬂ,) X Ln U Ln.

The set of all finite lists, F, is the union of all the L,’s. The ordering on F, and therefore for
each L, is defined as follows:
(1) LC 2z forallze F,
(2) zzyCuv ifzCuandyC v, i

So, an element of Ly is either an element of L, or a pair of elements where the first
component is either an atom or an element of L, and the second component is an element of L.
We write the pair (a,!) by a:l using the pairing operator which is assumed to be right associative.
For example, a:b:c = a:(b:c).

Next we define the projection mapping from Ly41 to L,. This mapping acts as identity on
the lists of L, that also belong to L,. For the other lists its value is the list in L,, that best

approximates the argument.

Definition
The projection functions, ¥y : Lny1 — Ly, are defined inductively:

to(z) = {<> =0,

L otherwise.

Ty if z:y € Ly;
'obn (x:y) = { $=¢n—1(y) ifxe A;
Yn-1(z):¥n—1(y) otherwise.

Ezamples
L contains L, ¢, 1:$, ($):L, 1:1, 1:2:1, (1:1):(L): 1, La:l, ete.
Lg contains all the elements of Lj as well as 1:2:3:.L, (1:2: 1):(1:¢):(<):L, ete.
Examples of the ordering and projection functions:

1C¢, LlatCllCl2:l, (1)L (1:0):0,

Y2 (1:2:0) = 1:2:0, hg((L:2:L):(1:L):(L):L) = (T 1):(L)L

3 Infinite lists

Infinite lists will be constructed to be sequences of finite lists where the nth element comes from
L,. Each element of the sequence will be the y-projection of the next. This is the consistency

condition necessary for the inverse limit construction.

2

Definition
The set of infinite lists, Lo, is the inverse limit of {L,; vy, }:

Loo = {{8n)2, | for all n, s, € Ly, and 8, = Yn(8n+1)}-

n=0

0

Clearly, there is a canonical injection from each L, into Lo, where each element is mapped to
an infinite sequence whose first n elements are the iterated projections while the rest are constant
injections.

Next, make Lo, into a partial order by defining the order componentwise on the sequence.

Definition
Let I, = (s,} and Iz = (f,) be infinite lists. The ordering on infinite lists is defined by:

Ll iff 8n = ty, for all n.

4 Complete Partial Orders

Once infinite lists are given with a partial ordering, the next step is to look at a chain of lists. We
want each chain to have a least upper bound that is again an infinite list, i.e., a member of L.

Definitions

A set of lists {I;}{2, is called a chain if Iy C l;y, for all . An element is an upper bound of a
chain if it is larger than every element of the chain. The least upper bound is an upper bound that
is least among all the upper bounds. We denote the least upper bound of a chain {I;}%2, by LIZ¢ k-
A partial order where every chain has a least upper bound is called a complete partial order. I

With these definitions we prove the Lemma needed to show that L. is a complete partial
order, i.e. that all chains have a least upper bound.

Lemma
Each L, is a complete partial order.

Proof. We show that the least upper bound exists for every chain by showing that a chain
in L, can have only a finite number of distinct elements, and therefore, the maximum of the chain
is the least upper bound.

Let us define the rank of a list to be the total number of occurrences of the pairing operator
(), the empty list (<), and defined elements of A. We claim that: (a) for each Ly the maximum
rank is bounded, and (b) if I; is strictly less defined than I3, then the rank of /; is less than the
rank of I;. (a) is proved by induction on the rank of lists. The max of the rank in Lo is 1. A list
in L,, consists of a finite number of lists of lower order. (b) is true because the only way to make
a list strictly more defined is by either replacing | by ¢ or z:L for some =, or replacing L4 by a

3

defined element of A, all of which increases the rank by one. Therefore, since the rank is bounded,
every chain must be finite. I

Next we prove the main Theorem that L, is a complete partial order by explicitly consfruct-
ing a list that is the least upper bound of a chain, and showing that it is a member of L.

Theorem
Lo, is a complete partial order.

Proof. Let {I;} be a chain with l; = {I;;)72,. Construct a new list as follows:

o0
I = {sn)izo where 8p = U lin.
i=0

From the previous Lemma, the least upper bound, sy, exists for each n, so [is well defined. By
definition sy, is in L,. To show that ! belongs to Lo, we need to show s, = ¥n(snt1) for all n.
This is shown by:
L= +]
1|l’i't(-9:'a+1) = \bn(u J"s’n+1)

=0

= EI Yn(lint1)

=0
[o o]
= [_I lin
£=0
= 8.
The first, third and last equalities are by definitions. The second equality follows from the mono-

tonicity of ¢y, and the fact that every chain is finite.
So, I is an upper bound since each component is the least upper bound, and it is the least

because it is the least element componentwise. 0

5 Application to Program Semantics

With Lo, proved to be a complete partial order, we can use it for the fixed point approach to
program semantics. The following programs are defined using an applicative language with lazy
evaluation like Turner’s KRC [82].

Ezample 1
A program to generate an infinite list of 1’s is:

f=rlf] where 7[f]=1:f.

The meaning of f is the least upper bound of the partial lists defined by the 7’s:

B:f]l= Io_olrﬁ

i=0

4

where the 7;’s are given inductively by:
fo=L1 and T4y =7[m]=1:m.

By considering a finite list 7; to be both a member of L; as well as its injection into L., the

first few terms are:
o = 1

n=rp|=lipg=1:1

rp=rn]=1mn=1:1:1

and therefore
[[f E - (Ti}?io

which is the object representing an infinite list of 1’s.

Ezample 2
A program to generate a list of order w. First, define a program that generates lists of all
finite order by using a parameter:

f0=1:f0
fin+1) = fn: f(n+1).

Next we diagonalize to get higher order elements:
Fn=1[Fln where r[Fln=fn:F(n+1).

If [fn] = o™ for each n, then

g =1:1:1: R
ol =06%:0%:0" ,
o?=cgt:0t:0?! s

and
|[F0]] =fO:f1:f2:.-- =g%:0t:g%: ...

Though the meaning of FO is precisely given, this is not satisfactory because, in practice,
since it is an infinite list, 0° cannot be given fully before giving o'. What we need is to represent
all infinite lists as limits of finite ones. To do this we need projection functions from infinite lists
to their finite approximations.

Let p,: Lo — Ly be the projection function defined by:

pn{0) =0, where o= {on)nio-

5

Then the meaning of 0 can be given as:
00
|[F 0]] = |_| T,'O,
$=0

where the finite lists are defined inductively by:
k=1 and mpak=r[mlk= pn(ak) :7o(k+1) for all k.

More explicitly:

T00= L
10 = r[r)0 =po(0°) il =0g: L =(L): L

120 = 7[n1]0 = p1(0°) : il = p1(¢°) : po(07) 102 = 0% 105 : L

™0 = Pn—-l(a'o) :Pn—z(a'l) R :po(tf"'_l) I Ton.

The projection functions ensure that 7,0 is an element of L,. At each stage, not only does the
length of the list grow, but each component of the list becomes more and more defined.

6 Conclusion

In order to construct w-order infinite lists, we used the inverse limit construction technique from
topology. This seems to be a very general technique for going from finite to infinite. Our con-
struction of the L,’s was chosen because of its simplicity and so may be less intuitive than others,
although any choice would probably lead to isomorphic limit. The only non-trivial part of these
notes is in showing that the least upper bound belongs to the domain of infinite lists we constructed.
Here we used the fact that for finite chains a monotonic function can be moved inside the limit.

In de Bakker and Zucker [83] concurrent processes denote infinite trees that are constructed
by first defining a distance metric between finite trees, and then, by using the standard completion
technique, obtain the infinite ones as limits of Cauchy sequences. By using the inverse limit, we do
not need a metric but are able to define the notion of a limit directly.

The inverse limit construction was used by Scott [73] to model the type-free A-calculus.
Infinite lists can be represented as certain terms in the A-calculus, and therefore, from a theoretical
point of view, the standard semantics using Do, is sufficient. From a practical and pedagogical
point of view, however, a more direct construction using finite lists is desirable, hence this paper.

Future work will be to explore the topological structure of the space of infinite lists, and make
the connection with type-free models of A-calculus more explicit.

Acknowledgments

These ideas crystallized out of the many discussions with Prof. Alain Martin and Chi Fai-Ho.
Thanks also go to Jerry Burch for pointing out an error. I would also like to thank Prof. James
Kajiya and Lenny Rudin for discussions on the inverse limit construction.

6

References

J. W. de Bakker and J. 1. Zucker,
[83] Processes and the Denotational Semantics of Concurrency, Foundations of Computer Science
IV, (eds.) J. W. de Bakker and J. van Leewen, Mathematical Centre Tracts 159, pp. 45-100,
1983.

J. Dugundji,
[66] Topology, Allyn and Bacon, Boston, 1966.

J. Nagata,
[68] Modern General Topology, North-Holland, Amsterdam, 1968.

D. Scott,
73] Models for various type-free calculi, in Logic, methodology and philosophy of science IV, Ed.
yPp ’ (2 P pay 3

P. Suppes (North-Holland, Amsterdam, 1973) pp. 157-187.

D. A. Turner,
[82] Recursion equations as a programming language, Functional Programming and its Applica-
tions, (eds.) J. Darlington, P. Henderson, and D. A. Turner, Cambridge University Press,
pp- 1-28, 1982.

